اشتراک ایدآل های اول مینیمال در حلقه توابع پیوسته
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده ریاضی و کامپیوتر
- author تهمینه سقائیان
- adviser مهرداد نامداری منیره پیمان
- Number of pages: First 15 pages
- publication year 1390
abstract
اگر x فضای فشرده حقیقی باشد اشتراک همه ایدآل های ماکسیمال آزاد c(x) با ck(x) برابر است و هر فضایی که چنین ویژگی داشته باشد، ?-فشرده نامیده می شود. در سال 1969 ماندلکر زیر مجموعهی گرد در فضای ?x را تعریف کرد و در سال 1973 به همراه جانسون نشان دادند که?x کوچکترین فضای? -فشرده بین x,?x می باشد.همچنین ماندلکر نشان داد که فضای x،یک p-فضا است اگر وتنها اگر هر زیر مجموعه ی ?x گرد باشد. در این رساله نشان می دهیم ?x x تقریبأ گرد است اگروتنهااگر xفضای ?-فشرده باشد.ثابت می کنیم f،x-فضا است اگر وتنها اگر هر زیرمجموعه از ?x تقریبأ گرد باشد. نشان می دهیم x،فضایی ? -فشرده است اگروتنهااگر ?-فشرده و ?? -فشرده باشد. اگرf،x-فضا باشد آن گاه p-فضا است اگروتنهااگر هر زیرمجموعه ی ?x نزدیک به گرد باشد.
similar resources
اشتراک ایدآل های اول مینیمال اساسی
فرض می کنیم(z(r مجموعه مقسوم علیه صفر در حلقه ی جابجابی r و m فضای ایدآل های اول مینیمال در حلقه ی r با توپولوژی زاریسکی باشد.ایدآل i حلقه ی r را قویاًچگال یا به طور خلاصه sd-ایدآل گوییم، هرگاه i زیرمجموعه ای از (z(r و مشمول در هیچ ایدآل اول مینیمال نباشد. مجموعه ی همه α عضو r را که ( d(α) = m/v(α در m فشرده باشد. نشان می دهیم که r دارای خاصیت (a)و m فشرده است اگر وتنها اگر r هیچ sd-ایدالی نداشت...
15 صفحه اولاشتراک ایدآل های اول مینیمال اساسی
چ مجموعه ی تمام مقسو معلیه های صفر حلقه ی تعویض پذیر و z(r) کنیم ?? فرض م باشد. ???? با توپولوژی زاریس r فضای ای دآل های اول مینیمال حلقه ی m و r دار ?? ی و i z(r) نامیم اگر ?? ? ایدآل م sd ال یا به اختصار ?? را ایدآل قویاً چ r از i ایدآل d(a) = که a 2 r را مجموعه ی تمام rk(m) نباشد. ?? در هیچ ایدآل اول مینیمال i و (a) دارای خاصیت r دهیم ?? گیریم. نشان م ?? فشرده است، در نظر م mnv (a) نداش...
آشنایی با حلقه های توابع پیوسته
این مقاله شرحی است از روند تاریخی پیدایش نظریه حلقه های توابع پیوسته و بیان موضوعات اصلی پژوهش در این زمینه از ریاضیات همراه با توصیف فعالیت های پژوهشی انجام شده در کشور طی سالهای گذشته و در حال حاضر.
full textاعضای ایدآل های اول مینیمال در حلقه های تعویض ناپذیر
r را به عنوان حلقه در نظرمی گیریم.a ? r را یک مقسوم علیه صفر ضعیف می نامیم اگر وجود داشته باشد r,s ? r کهras = 0 باشد وrs ? 0 . این مطلب نشان می دهد که در هر حلقهr ، اعضایی از ایدآل های اول مینیمال مقسوم علیه صفر ضعیف هستند، مثال هایی وجود دارند که نشان می دهند ایدآ ل اول مینیمال یک حلقه می تواند شامل عناصری باشد که نه مقسوم علیه صفر چپ اند و نه مقسوم علیه صفر راست. در این مقاله نشان می دهیم که...
15 صفحه اولاجتماع ایدآل های اول مینیمال درحلقه ی توابع پیوسته روی فضاهای فشرده
در حلقه ی توابع پیوسته ی حقیقی مقدار روی فضای توپولوژی x، هر ایدآل اول مشمول در یک ایدآل ماکسیمال منحصر به فرد است. اگر x فشرده باشد، آن گاه هر ایدآل ماکسیمال به شکل mp برای یک p ? x و شامل همه ی عناصر f ? c(x) است به طوری که f(p) = ? و اشتراک همه ی ایدآل های اول مینیمال در mp مجموعه ی همه ی توابع پیوسته ای است که در یک همسایگی نقطه ی p صفر می شوند. در این پایان نامه عکس بعضی از جزئیات را بررسی...
حلقه های توابع پیوسته در دهه ی پنجاه
آن چه که در پی می آید تجدید خاطره ی نویسنده از پیدایش و آغاز رویش حلقه های توابع پیوسته با تاکید بر روی کارهایی است که در دهه ی پنجاه در دانشگاه پوردو انجام شده است. ادعایی بر بی نقص بودن یا تاریخی-تحقیقی بودن آن نیست. مقداری از کار انجام شده در آن زمان مورد بحث قرار گرفته و ارجاعات به کتاب ها و مقالات مروری آن دوره را در بر گرفته است. روی هم رفته نمادهایی که در ادامه مورد استفاده قرار گرفته از...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده ریاضی و کامپیوتر
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023